Exciton-Coupled Electron Transfer Process Controlled by Non-Markovian Environments.
نویسندگان
چکیده
We theoretically investigate an exciton-coupled electron transfer (XCET) process that is conversion of an exciton into a charge transfer state. This conversion happens in an exciton transfer (XT) process, and the electron moves away in an electron transfer (ET) process in multiple environments (baths). This XCET process plays an essential role in the harvesting of solar energy in biological and photovoltaic materials. We develop a practical theoretical model to study the efficiency of the XCET process that occurs either in consecutive or concerted processes under the influence of non-Markovian baths. The role of quantum coherence in the XT-ET system and the baths is investigated using reduced hierarchal equations of motion (HEOM). This model includes independent baths for each XT and ET state, in addition to a XCET bath for the conversion process. We found that, while quantum system-bath coherence is important in the XT and ET processes, coherence between the XT and ET processes must be suppressed in order to realize that an efficient irreversible XCET process through the weak off-diagonal interaction between the XT and ET bridge sites arises from an XCET bath.
منابع مشابه
Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities.
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provid...
متن کاملNon-Markovian quantum jumps in excitonic energy transfer.
We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beat...
متن کاملLinear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration.
We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We fi...
متن کاملThe quantum solvation, adiabatic versus nonadiabatic, and Markovian versus non-Markovian nature of electron-transfer rate processes.
In this work, we revisit the electron-transfer rate theory, with particular interests in the distinct quantum solvation effect and the characterizations of adiabatic/nonadiabatic and Markovian/non-Markovian rate processes. We first present a full account for the quantum solvation effect on the electron transfer in Debye solvents, addressed previously in J. Theor. Comput. Chem. 2006, 5, 685. Dis...
متن کاملInfluence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates.
We present a theory that efficiently describes the quantum dynamics of an electronic excitation that is coupled to a continuous, highly structured phonon environment. Based on a stochastic approach to non-Markovian open quantum systems, we develop a dynamical framework that allows us to handle realistic systems where a fully quantum treatment is desired yet the usual approximation schemes fail....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry letters
دوره 8 21 شماره
صفحات -
تاریخ انتشار 2017